## DPP - 4 (Capacitor)

## Video Solution on Website:- <br> https://physicsaholics.com/home/courseDetails/65

## Video Solution on YouTube:- <br> https://youtu.be/yhpVIY6IJvQ

## Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/62

Q 1. Two capacitors of capacitances $1 \mu \mathrm{~F}$ and $3 \mu \mathrm{~F}$ are charged to the same voltages 5 V . They are connected in parallel with oppositely charged plates connected together. Then
(a) Final common voltage will be 5 V
(b) Final common voltage will be 2 V
(c) Heat produced in the circuit will be zero
(d) Heat produced in the circuit will be $37.5 \mu \mathrm{~J}$

Q 2. A capacitor of $5 \mu \mathrm{~F}$ is charged to a potential of 100 V . Now, this charged capacitor is connected to a battery of 100 V with the positive terminal of the battery connected to the negative plate of the capacitor. For the given situation, mark the correct statement.
(a) The charge flowing through the 100 V battery is $500 \mu \mathrm{C}$
(b) The charge flowing through the 100 V battery is $2000 \mu \mathrm{C}$
(c) Work done by the battery is 0.1 J
(d) Work done on the battery is 0.1 J

Q 3. A 12 pF capacitor is connected to a 50 V battery. How much of electrostatic energy is
stored in the capacitor?
(a) $15 \times 10^{-9}$
(b) $5 \times 10^{-10} \mathrm{~J}$
(e) $1.5 \times 10^{-10} \mathrm{~J}$
(d) $1 \times 10^{-8} \mathrm{~J}$

Q 4. A $2 \mu \mathrm{~F}$ capacitor is charged as shown in figure. The percentage of its stored energy dissipated after the switch $S$ is turned to position 2 is

(a) $0 \%$
(b) $20 \%$
(c) $75 \%$
(d) $80 \%$

Q 5. A capacitor of capacitance $100 \mu \mathrm{~F}$ is connected across a battery of emf 6.0 V through a resistance of $20 \mathrm{k} \Omega$ for 4.0 s . The battery is then replaced by a thick wire. What will be the charge on the capacitor 4.0 s after the battery is disconnected? (Given $e^{-2}=.15$ )
(a) $76.5 \mu \mathrm{C}$
(b) $30 \mu \mathrm{C}$
(c) $85 \mu \mathrm{C}$
(d) $58 \mu \mathrm{C}$

Q 6. The amount of heat generated in $500 \Omega$ resistance, when the key is thrown over from contact 1 to 2 , as shown in figure is?

(a) $40 \times 10^{-3} \mathrm{~J}$
(b) $50 \times 10^{-3} \mathrm{~J}$
(c) $60 \times 10^{-3} \mathrm{~J}$
(d) $30 \times 10^{-3} \mathrm{~J}$

Q 7. Find total energy stored in capacitors given in the circuit

(a) $36 \times 10^{-6} \mathrm{~J}$
(b) $3.6 \times 10^{-7} \mathrm{~J}$
(c) $45 \times 10^{-5} \mathrm{~J}$
(d) $25 \times 10^{-6} \mathrm{~J}$

Q 8. The two parallel plates of a condenser have been connected to a battery of 300 V and the magnitude of charge collected at each plates is $1 \mu \mathrm{C}$. The energy supplied by the battery is.
(a) $6 \times 10^{-4} \mathrm{~J}$
(b) $3 \times 10^{-4} \mathrm{~J}$
(c) $1.5 \times 10^{-4} \mathrm{~J}$
(d) $4.5 \times 10^{-4} \mathrm{~J}$

Q 9. A parallel-plate capacitor with the plate area $100 \mathrm{~cm}^{2}$ and the separation between the plats 1.0 em is connected across a battery of emf 24 volts. Find the force of attraction between the plates.
(a) $2 \times 10^{-6} \mathrm{~N}$
(b) $3.45 \times 10^{-4} \mathrm{~N}$
(c) $1.32 \times 10^{-5} \mathrm{~N}$
(d) $2.57 \times 10^{-7} \mathrm{~N}$

Q 10. Consider the circuit shown in figure. The circuit is in steady state. The value of $i_{1}$ is:

(a) $\frac{7}{9} \mathrm{~A}$
(b) $\frac{14}{13} \mathrm{~A}$
(c) $\frac{14}{3} \mathrm{~A}$
(d) $\frac{13}{27} \mathrm{~A}$

Q 11. In the given circuit, if the current through cell is I, immediately after closing the switch and will become $I^{\prime}$ long after closing the switch, then $\frac{I}{I^{\prime}}$

(a) 2
(b) $\frac{2}{3}$
(c) $\frac{3}{2}$
(d) 3

Q 12. What is the time constant of the circuit shown in Figure? Each of the five resistors has resistance $R$, and each of the five capacitors has capacitance $C$. The internal resistance of the battery is negligible.

(a) RC
(b) 5 RC
(c) 10 RC
(d) 25 RC

Q 13. In the circuit shown in figure, the battery is an ideal one with emf V. The capacitor is initially unchanged. Switch $S$ is closed at time $t=0$. The final charge $Q$ on the capacitor is:

(a) $\frac{C V}{2}$
(b) $\frac{C V}{3}$
(c) CV
(d) $\frac{C V}{6}$


Q 14. A capacitor of capacitance $5 \mu \mathrm{~F}$ is connected as shown in the figure. The internal resistance of the cell is $0.5 \Omega$. The amount of charge on the capacitor plate is

(a) $0 \mu \mathrm{C}$
(b) $5 \mu \mathrm{C}$
(c) $10 \mu \mathrm{C}$
(d) $25 \mu \mathrm{C}$

Q 15. The circuit shown in Figure is in steady state. Find the energy stored in the capacitors shown in Figure.

(a) $8 \mu \mathrm{~J}$
(b) $80.5 \mu \mathrm{~J}$
(c) $35 \mu \mathrm{~J}$
(d) $17.5 \mu \mathrm{~J}$

Q 16. What is the energy stored per unit volume in vacuum, where the intensity of electric field is $10^{3} \mathrm{~V} / \mathrm{m} ?\left(\varepsilon_{0}=8.85 \times 10^{-12} C^{2} / N-m^{2}\right)$
(a) $8.85 \times 10^{-6} \mathrm{~J} / \mathrm{m}^{3}$
(b) $4.425 \times 10^{-6} \mathrm{~J} / \mathrm{m}^{3}$
(c) $4.425 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{3}$
(d) $8.85 \times 10^{-5} \mathrm{~J} / \mathrm{m}^{3}$

Q 17. Electric field in a region is found to be $E=3 y \hat{\jmath}$. The total energy stored in electric field inside the cube shown will be

(a) $9 a^{5} \varepsilon_{0}$
(b) $3 a^{5} \varepsilon_{0}$
(c) $\frac{3}{2} a^{5} \varepsilon_{0}$
(d) zero

Q 18. Find out energy stored in the electric field of uniformly charged thin spherical shell of total charge Q and radius R .
(a) $\frac{k Q^{2}}{2 R}$
(b) $\frac{k Q^{2}}{3 R}$
(c) $\frac{3 k Q^{2}}{2 R}$
(d) $\frac{2 k Q^{2}}{R}$

Q 19. A parallel plate capacitor has an electric field of $10^{5} \mathrm{~V} / \mathrm{m}$ between the plates. If the charge on the capacitor plate is $1 \mu \mathrm{C}$, then force on each capacitor plate is-
(a) 0.1 N
(b) 0.05 N
(c) 0.02 N
(d) 0.01 N

## Answer Key

| $\text { Q. } 1 \mathrm{~d}$ | $\text { Q. } 2 \mathrm{c}$ | $0.3$ | Q. 4 d | Q. 5 a |
| :---: | :---: | :---: | :---: | :---: |
| Q. 6 c | $0.7 \mathrm{a}$ | Q. 8 c | Q. 9 d | Q. 10 b |
| Q. 11 a | Q. 12 d | Q. 13 a | Q. 14 c | Q. 15 b |
| Q. 16 b | Q. 17 c | Q. 18 a | Q. 19 b |  |

